7 Mapas potencializam canais de Distribuição e Vendas na Indústria

Ao analisar territórios as empresas obtêm insumos que ampliam a compreensão da sua atuação no mercado, otimizam sua distribuição e inspiram novas estratégias.

Ter um departamento de inteligência de mercado bem estruturado é essencial para qualquer indústria que pretende contar com canais de distribuição eficientes e as vendas sempre no topo. E trabalhar com o geomarketing torna-se um diferencial: você tem o poder de análise de mapas para traçar caminhos no planejamento estratégico.

Ao analisar territórios, as empresas do setor industrial obtêm insumos que ampliam a compreensão da própria atuação no mercado (e da presença de concorrentes), otimizam sua distribuição de produtos e inspiram novas estratégias de atuação.

Além de conhecer seus competidores diretos e indiretos, a Indústria precisa caminhar em conjunto com o trade marketing, para que exista sinergia entre a demanda e a distribuição do que é produzido.

Quando essas companhias planejam a abertura de novos centros de distribuição, miram principalmente pontos que facilitam a logística de sua operação. É necessário pensar na proximidade com o público, o mix de produtos para os pontos de venda e a demanda de consumo em cada local, além de dados básicos como demografia, renda, escolaridade e disposição de outros polos geradores.

Mas, geralmente, a Indústria tem pouca informação sobre as regiões de seus pontos de venda, ou seja, sobre onde está o consumidor final. A tarefa de identificar esse público fica quase sempre a cargo dos CDs, que costumam ser empresas menores, com equipes e recursos reduzidos.

"Por conta desse cenário, talvez seja o momento de repensar a relação entre as empresas e os canais de distribuição. Ao fornecer dados de inteligência de mercado, as indústrias fortalecem a relação de confiança com os distribuidores. Afinal, nesse contexto, quem não precisa estabelecer estratégias assertivas que possam impactar em uma distribuição mais rápida ou na redução do valor do frete, por exemplo? Torna-se uma relação de ganhos para ambos os lados."

1. Definição da área de estudo

Já pensou em usar mapas para desenhar um planejamento eficaz para o seu negócio? O geomarketing está aí para ajudá-lo a obter melhores resultados. E, muitas vezes, eles são consequência da troca de informações entre Indústria e Varejo.

Dentro de uma plataforma de geomarketing, o primeiro passo é definir a área de estudo. Isso é, delimitar a profundidade do mercado em que o estudo será realizado. É preciso decidir quais tipos de análise serão feitas – se a partir de uma escala macro, analisando o Brasil todo, ou em áreas específicas, como um agrupamento de municípios, uma só cidade ou até mesmo um bairro isolado. Observe:

Regiões

Após decidir qual será o objetivo do estudo, há diversos métodos de trabalhar os mapas. Cada indústria conhece suas necessidades, que são bem variadas, e pode desenvolver usos diferentes do geomarketing.

2. Localização de clientes, depósitos e outros pontos de interesse

O mapa a seguir é bem simples e pode ser o ponto de partida para a resolução de muitas questões importantes. Os três fatores destacados são depósitos, clientes e prospects, na proximidade de uma hipotética filial em Campinas.

Apenas destacando os pontos e realizando uma breve análise, é possível entender a área de influência da filial campineira, onde estão os clientes atendidos e em quais locais é preciso levar mais esforços para conquistar prospects. Ou seja, ao construir este gráfico, você entende o potencial do seu mercado em poucos passos.

E para tornar o estudo ainda mais completo, uma plataforma de geomarketing permite incluir informações sobre diferentes aspectos sociodemográficos, como renda, faixa etária e outras características relevantes para conhecer a região.

Prospects

3. Tipos de estabelecimento e mix de produtos

Se a indústria em que você trabalha conta com diferentes tipos de produtos, não basta saber somente onde se encontra seu prospect, mas também a qual tipo de segmento ele pertence. Esse procedimento é indicado para entender quais produtos são mais aderentes em cada ponto de venda.

O exemplo de mapa abaixo reúne pontos de venda em dois bairros de Belo Horizonte, dividindo-os entre padarias, supermercados e minimercados/armazéns. Supondo, por exemplo, que a empresa seja uma fabricante de pães, bolos e biscoitos, com este tipo de dados em mãos, é possível decidir quais produtos são melhores para a venda em padarias.

O objetivo é não competir com os produtos já disponíveis lá e também não enviar aqueles com pouca saída no local, afinal, quando ficam encalhados nas gôndolas, acabam estragando e indo parar no lixo.

Estabelecimentos

O sortimento de produtos por estabelecimento é um ponto importante a ser considerado durante a distribuição e prospecção de venda.

4. Otimização das carteiras de clientes e canais de vendas

Após identificar as oportunidades e decidir quais tipos de produtos serão vendidos em cada ponto das regiões escolhidas, chega a hora de definir planos de ação. Eles podem ser construídos a partir dos mapas já existentes.

Muitos vendedores agem apenas por feeling e percepção que possuem do local. Esse conhecimento prático da região é interessante, mas um estudo mais detalhado do mercado, com ferramentas analíticas, pode agregar muito mais informações à estratégia de vendas e ajudar a equipe comercial a bater metas.

Como começar? Com a identificação de pontos de interesse feita no mapa, analise como será a atuação de cada vendedor por região e áreas de influência. Os fatores geográficos são importantes quando se trata de desenhar locais de visitação de representantes de vendas: o trânsito de uma região pode ser complicado e existem barreiras geográficas como rodovias, rios e linhas de trem que dificultam a transposição de um lado para outro.

Com as áreas de visitação desenhadas, o tempo é otimizado. Todos os clientes e prospects aparecem nos roteiros, para que o potencial de mercado seja bem explorado, as sobreposições de rotas sejam evitadas e os representantes de vendas possam traçar os caminhos que consideram mais fáceis para visitar seus contatos.

Distribuicao de Vendedores

5. Canais de distribuição eficientes com análise do público-alvo

Indústrias costumam trabalhar com parceiros para a realização da distribuição de seus produtos e, como já foi dito, nem sempre têm conhecimento de quem é seu público final. Quem dirá, então, ter dados sobre residência, renda e preferências desses consumidores?!

Assim como a Indústria, muitos canais de distribuição não possuem esse tipo de informação. São empresas de pequeno e médio porte que trabalham usando o conhecimento de campo e o feeling como guias, o que pode gerar muitas falhas.

No entanto, obter informações precisas dos consumidores de um local é essencial para compor ações de marketing, trade marketing e estratégias de distribuição. Ou seja, por que não investir em dados precisos e qualificados para a análise de público por região?

Entender o potencial de consumo pode auxiliar na escolha de um sortimento de produtos aderente ao público de um bairro, assim como definir qual o preço pode ser cobrado em um determinado local. E os dados podem ser ainda mais refinados para indicar aspectos do comportamentais dos moradores.

Para indústrias com produtos muito segmentados, a identificação do perfil do público de cada local é ainda mais importante. Se o produto é direcionado a um público da terceira idade, por exemplo, é necessário saber onde está o consumidor de faixa etária e renda compatíveis com o bem a ser vendido.

A Serasa Experian desenvolveu o Mosaic, produto que divide a população brasileira em 11 grupos e 40 segmentos baseados em aspectos financeiros, geográficos, demográficos, de consumo, comportamento e estilo de vida. Assim, fica muito mais simples saber onde o consumidor encontra-se e distribuir os produtos de maneira aderente. Confira o mapa abaixo para entender como a aplicação do recurso pode ser feita:

Mapa Mosaico Indústria

6. Avaliação de mercado e identificação de empresas para negócios

O geomarketing não apenas permite analisar o mercado e aprimorar as dinâmicas e processos de distribuição e vendas. Por meio dos mapas inteligentes, você também enxerga novas oportunidades de negócio.

A Geofusion possui uma base com mais de 18 milhões de empresas cadastradas, que possibilita a identificação de pontos utilizando a CNAE (Classificação Nacional de Atividades Econômicas). Tudo é validado e atualizado diariamente para garantir a qualidade da base.

A seleção de CNAEs apresenta diferentes critérios que identificam riscos de realizar transações, tamanho da empresa, faturamento, local e operacionalidade. Os dados são conferidos junto à Receita Federal, com base na emissão de notas fiscais e detalhamento de tributos pagos.

A partir da identificação de CNAEs desejados, você pode realizar um agrupamento de pontos e iniciar análises mais específicas dentro dos mapas, com as segmentações baseadas no interesse de cada tipo de negócio. Veja uma simulação feita na cidade de Campinas:

Identificação de Pontos

Após a escolha dos CNAEs de interesse, a plataforma permite visualizá-los no mapa e, a partir disso, criar um novo fluxo de trabalho, como mostrado no item 3 deste post. Você pode agrupá-los, dividi-los e definir as carteiras de cada vendedor.

7. Acompanhamento de metas dos vendedores

Utilizando o banco de dados da sua empresa, você pode mapear quais municípios de atuação estão caminhando de acordo com as metas e necessidades, e quais precisam de mais atenção. É um monitoramento que parece bastante simples, mas pode ser muito útil para acompanhar estratégias distribuídas em territórios mais extensos do País.

Indústrias que atuam em vários estados também precisam analisar o mercado em uma escala macro e, a partir daí, entender seus pontos fortes e fracos. Dessa forma, repara-se erros e se atinge maiores resultados. Confira uma análise feita no estado do Paraná, com a sinalização de metas por cada município:

Mapa de Metas

"Conhecimentos de geomarketing irão agregar novas possibilidades e oferecer um olhar muito diferenciado para estratégias da empresa em que você trabalha. Há diferentes usos para a inteligência geográfica e diversos problemas que análises de mercado podem resolver. Basta criar a sua própria solução com software livre ou, se for suficiente e viável economicamente, selecionar uma das soluções do mercado, organizar os dados e começar."

fonte

A Internet das Coisas (IoT) na prática - Desafios e Case de Sucesso

É bastante promissor observar que muitas empresas já estão evoluindo e colocando em prática os pilotos desenvolvidos nos últimos anos.

Em outubro de 2017, a segunda edição do IoT Snapshot, Um retrato da adoção e do potencial da internet das coisas no mercado brasileiro, revelou uma evolução bastante promissora em relação ao que o mercado espera da internet das coisas (IoT - Internet of Things) e o quanto essa tecnologia está sendo adotada pelas empresas. Para citar um exemplo, as organizações que estão investindo em IoT, em processo de adoção ou que pretendem adotar a tecnologia em 2018 já são mais de 60% dos respondentes.

Nos últimos anos, aconteceram muitos testes, protótipos, experimentações e aprendizados. Além disso, surgiram modelos de negócios diferentes, parcerias e o florescimento de um novo mercado. Mas em meio a esse ambiente de pioneirismo, observamos empresas que já começaram a se deparar com um novo conjunto de desafios: os projetos-piloto começaram a dar certo e é hora de fazer o roll-out – e agora

Abaixo, listo quatro fatores que surgiram na pauta dessas empresas que já se convenceram dos benefícios da internet das coisas e agora querem usá-la na prática:

1 - Mensuração dos benefícios frente aos investimentos

As iniciativas de inovação e os projetos de IoT vinham, e ainda vêm, muitas vezes, sendo desenvolvidos com investimentos e budgets direcionados à experimentação. Esse movimento também contava com uma boa parcela de patrocínio da indústria, que queria mostrar suas soluções e se posicionar no mercado.

Quando esses projetos ganham proporções de operação real, a conta muda de dimensão. O entendimento dos benefícios se torna uma questão crítica, uma vez que os investimentos passam a concorrer com orçamentos direcionados a outras prioridades da organização.

2 - Robustez financeira e técnico-operacional dos parceiros

Outra mudança de patamar que acontece nesse momento diz respeito aos players envolvidos nas iniciativas de IoT. Enquanto teste, PoC ou piloto, exige-se pouca robustez dos participantes envolvidos – até porque muitas das soluções demandadas não são desenvolvidas por grandes players, mas sim por start-ups focadas em nichos muito específicos de mercado.

Quando a empresa passa dos testes para tentativas de roll-out, entram em cena necessidades como solidez financeira, volume de produção, suporte operacional às soluções e outros requisitos que são muito menos atrativos, mas que não podem falhar em uma operação real. Equilibrar as especificidades das soluções com a necessidade de robustez para um ambiente operacional é um dos desafios de quem está amadurecendo.

3 - Maturidade das equipes quanto às novas tecnologias e processos

A identificação, desenvolvimento e retenção de profissionais capacitados e motivados sempre foi um desafio comum de qualquer gestor. Esta complexidade aumenta consideravelmente quando estamos tratando de temas que ainda não estão maduros.
Muitas empresas contam com alguns profissionais de referência, que têm conseguido acompanhar essas inovações, mas têm dificuldade em construir equipes que possibilitem a concretização dos projetos. Contar com profissionais capacitados (e em constante aprimoramento) foi e, provavelmente, continuará sendo um tema relevante para os gestores de tecnologia.

4 - Segurança da informação, continuidade de negócios e governança – gestão de riscos

É sabido que, com a IoT, a quantidade de dispositivos conectados se multiplica e cada um deles pode se tornar um ponto de vulnerabilidade no ambiente tecnológico das empresas. Mas mesmo que este fato seja de conhecimento geral, o tema de segurança ainda não aparece de maneira voluntária como um elemento essencial na arquitetura de IoT. Isso ficou comprovado no IoT Snapshot 2017 – quando provocados, os respondentes concordaram que esse é um tema crítico, mas foi um dos menos citados de maneira voluntária.

Além disso, com as soluções de internet das coisas, a tecnologia passa a integrar elos da cadeia que usualmente contavam com pouco suporte tecnológico. Com isso, o escopo de continuidade de negócios tende a se ampliar de maneira significativa. A cobertura da tecnologia se amplia e, proporcionalmente, a necessidade de uma gestão de riscos relacionados à segurança e à continuidade das operações.

De qualquer forma, é bastante promissor observar que muitas empresas já estão evoluindo e colocando em prática os pilotos desenvolvidos nos últimos anos. O que eram promessas e apostas começam a se concretizar como uma realidade tangível. Mas a IoT, na prática, traz à tona novos desafios, que não são mais de experimentação, mas sim de operação, resiliência e confiabilidade. Por isso, é necessário manter o espírito jovem e a mente ainda mais aberta às novidades, mas amadurecer e ganhar robustez para se encaixar no ambiente real de operações.

Carros e caminhões da Volvo vão compartilhar alertas de trânsito

A Volvo decidu se unir na busca de um trânsito mais seguro e anunciou que seus veículos vão compartilhar em tempo real as informações recolhidas por suas tecnologias de alertas de trânsito.

Com isso, quando o pisca-alerta de um carro equipado com o sistema Hazard Light Alert for acionado, um alerta será enviado tanto para outros carros equipados com a tecnologia quanto para caminhões da Volvo Trucks que possuem sistema semelhante. O mesmo acontecerá caso o motorista de um desses caminhões ligue o pisca-alerta de seu veículo.

A partir da informação de que há automóveis diminuindo a velocidade ou completamente parados adiante, os motoristas poderão tomar atitudes que reduzem a chance de acidentes, como ir mais devagar ou até alterar a rota.

Esta é a primeira vez que a Volvo Cars divide com outra empresa (apesar de ambas serem Volvo, as companhias pertencem a grupos diferentes) os dados compartilhados entre carros com o sistema Hazard Light Alert, que é item de série de diversos modelos da marca desde 2016.

De acordo com a vice-presidente do Centro de Segurança Volvo Cars, Malin Ekholm, a expectativa é de que novas colaborações ocorrem nesse sentido. “Quanto mais veículos temos compartilhando dados de segurança em tempo real, mais seguras se tornam nossas estradas. Estamos ansiosos para estabelecer novas colaborações com outros parceiros que compartilham nosso compromisso com a segurança no trânsito”, disse em comunicado à imprensa.

Por enquanto, a comunicação entre carros e caminhões acontecerá somente entre veículos vendidos na Suécia e na Noruega. Para garantir o cumprimento da Regulação Geral de Proteção de Dados da União Europeia, que entra em vigor no fim de maio, os dados serão anônimos e agregados.

Referências:
http://cio.com.br/opiniao/
https://www.tecmundo.com.br/mobilidade-urbana-smart-cities

Atualizações sobre o mundo Pentaho

Aquecimento

Para iniciar, cabe uma breve explanação sobre os acontecimentos que têm aquecido o mercado e a comunidade de empresas, usuários e desenvolvedores de soluções de apoio a decisão, que evitam desperdiçar verdadeiros latifúndios com licenças de uso de softwares antigos e criam suas próprias soluções, sob medida, e sem vínculos com quem quer que seja. Nem com vendedores de licenças, nem de servidores nem de consultorias, cursos ou treinamentos caríssimos e infinitos.

Muitos projetos ambiciosos da atualidade, em todo o mundo, só são considerados viáveis por conta das facilidades oferecidas pelo produto Pentaho, uma suíte (um conjunto de softwares integrados entre si) de código aberto, gratuito, que contempla todas as etapas de soluções de Business Analytics e/ou Business Intelligence, end to end. O Pentaho tem sido turbinado, digamos assim, pelas CTools, um conjunto de plugins criados por uma empresa portuguesa, a Webdetails. Em 2013 ela foi comprada pela Pentaho, empresa que mantém o produto com o mesmo nome, que conta com uma versão Enterprise, não gratuita e ainda mais completa que a versão gratuita, a Community. Ambas as versões passam a contar com várias das Ctools como parte integrante, juntamente com o Pentaho Marketplace, responsável pela instalação e gerenciamento de plugins.

Em 2015 a empresa Pentaho foi comprada por um dos maiores grupos do mundo, a Hitachi, um líder global em indústrias, infraestrutura e tecnologia, que tem, entre outros, foco no mercado de IoT, internet das coisas. Eles gerenciam entre outros empreendimentos, usinas nucleares, metrôs, ferrovias e têm uma gama de sensores bastante considerável. Todos estes sensores geram dados, que precisam ser analisados em tempo hábil para que façam algum sentido e ajudem na tomada de decisões, aplicáveis em praticamente todas as esferas da sociedade. Aí é que entra a suíte Pentaho.

Pentaho Day 2017 Brasil - Curitiba/PR

Pentaho Day 2017 - BrasilE ao falarmos de Pentaho, cabe aqui destacar, ainda com certo delay, que o Pentaho Day 2017 Brasil - Curitiba/PR foi fantástico, como sempre. Foram tantos aprendizados e tantos contatos estabelecidos, que vários projetos desde então foram executados aqui na e-Setorial e nos consumiram, mas não podemos deixar de enaltecer mais essa iniciativa da comunidade Pentaho Brasil, que ajuda profissionais e empresas de ramos de atividade e portes diferentes. A título de exemplo, nossos projetos este ano foram tão variados, que foram desde a análise de dados de Educação à Distância, do Enriquecimento de Dados de Pessoas Físicas e Jurídicas do Brasil, a análise de dados Hospitalares para Planos de Saúde, até um sistema completo para gestão de risco em Usinas Hidrelétricas e Barragens. Todos desenvolvidos utilizando o Pentaho em sua versão gratuita, atingindo excelentes resultados.

O maior evento da comunidade Pentaho do Mundo, contou com mais de 400 participantes e teve Palestras, Cases e Minicursos ministrados por algumas das maiores referências sobre o tema, que aconteceu na Universidade Positivo, em Curitiba/PR, no Brasil, nos dias 11 e 12 de maio.

O destaque principal ficou para apresentação de Matt Casters sobre o seu fantástico Web Spoon, que é o Pentaho Data Integration rodando inteiramente na web, facilitando ainda mais o desenvolvimento e manutenção das soluções.

Muito do material produzido e apresentado no evento está disponível no site do evento, inclusive o minicurso oferecido por Eduardo Carvalho, da e-Setorial, com o título "Design Patterns para Tuning Pentaho com Ctools".

Espaço para Tietagem

Eduardo Alves de Carvalho

Analista Sênior de BI na e-Setorial

"Não são todos os dias que encontramos tantos profissionais que admiramos de uma só vez. Não poderia deixar de registrar a confraternização com o norte americano Matt Casters, à esquerda, criador do Pentaho Data Integration e o português Pedro Alves, ao centro, o Criador das CTools, amigo e meu instrutor por diversas oportunidades, desde 2012. E isso acontecendo em minha cidade natal, Curitiba. Pentaho Day Brasil 2017"


Capricho da organização

A organização do evento foi impecável. Deixamos o agradecimento ao amigo Marcio Junior Vieira, da Ambiente Livre, responsável por mais esta edição do evento.

Hitachi Vantara

Hitachi VantaraEm 18 de setembro de 2017 a Hitachi anunciou a formação da Hitachi Vantara, uma empresa cujo objetivo é ajudar as organizações a prosperar nos tempos incertos e turbulentos de hoje e se preparar para o futuro. Esta nova empresa unifica a missão e as operações da Pentaho, Hitachi Data Systems e Hitachi Insight Group em um único negócio, a Hitachi Vantara. Juntas, dão aos líderes empresariais uma vantagem para encontrar e usar o valor em seus dados, inovar inteligentemente e atingir os resultados que são importantes para as empresas e a sociedade.

Apresentando a Vantara: uma combinação de TI, tecnologia operacional (OT) e expertise de domínio. Com o software de integração e análise de dados Pentaho, a Vantara oferece às organizações o poder de capturar e usar dados de forma eficiente a partir da "borda", onde os dados são movidos de forma fluida por sensores e dispositivos fora dos internos do negócio do dia-a-dia e combinam estes dados de sensores com recursos de dados corporativos mais tradicionais para fornecer um alto nível de contexto e previsões inteligentes que levam a resultados comerciais reais.

O que dizem os envolvidos

Donna Prlich

CHIEF PRODUCT OFFICER

A integração e análise de dados Pentaho continuará a evoluir, e a Hitachi Vantara irá investir para se manter à frente dos futuros desenvolvimentos em grandes dados, IoT e aprendizagem de máquinas. Sabemos o que nossos clientes precisam e com o poder e os recursos da Hitachi, podemos levá-los até mais rápido.

Pedro Alves

SVP Community / Product Designer for Pentaho at Hitachi Vantara

Não há planos de mudar a estratégia de código aberto ou parar de fornecer uma edição CE para a nossa comunidade! Essa mudança pode acontecer no futuro? Oh, absolutamente sim! Assim como poderia ter mudado no passado. E quando poderia mudar? Quando ele deixa de fazer sentido; quando deixa de ser mutuamente benéfico. E naquele dia, serei o primeiro a sugerir uma mudança em nosso modelo. Se a opensource nos trouxe aqui em primeiro lugar - mudaremos realmente isso agora que as coisas estão se aquecendo? Nós somos loucos, não estúpidos;)

Em resumo, foi criada uma nova empresa com uma estrutura muito maior, chamada Hitachi Vantara, que continuará a trabalhar com o produto Pentaho nas suas versões Enterprise, paga, e Community, gratuita.

Pentaho 8.0

Hitachi VantaraA comunidade está em polvorosa e no evento mundial da Pentaho, o PentahoWorld 2017, que aconteceu na semana passada, entre 25 e 27 de outubro em Orlando na Florida.

Entre todos os fantásticos cases apresentados, surgiu mais uma novidade bombástica. Foi anunciado a versão 8 do Pentaho, já para o mês que vem.

  • Plataforma e Escalabilidade
    • Worker nodes
    • Novo tema
  • Data Integration
    • Suporte de streaming!
    • Execute configurações para jobs
    • Filtros no Data Explorer
    • Nova experiência de Abrir / Salvar
  • Big Data Vendemos Inteligência Empresarial
    • Melhorias em AEL
    • Formatos de arquivo para Big Data - Avro e Parquet
    • Segurança em Big Data- Suporte para Knox
    • Melhorias de VFS para Clusters de Hadoop
  • Outras
    • Ops Mart para Oracle, MySQL, SQL Server
    • Melhorias na segurança da senha da plataforma
    • Mavenization PDI
    • Alterações de documentação em help.pentaho.com
    • Remoção de recursos:
      • Analisador em MongoDB
      • Plug-in móvel (desativado em 7.1)

Conclusão

Hitachi Vantara Com investimentos que só uma grande corporação pode fazer, o produto tem tudo para se disseminar ainda mais e ganhar espaço dos grandes players. A equipe de desenvolvimento não para, ao contrário dos concorrentes que só pensam em vender licenças de uso de suas ferramentas. Cada vez mais o pentaho traz segurança, facilidade em desenvolver e manter e o melhor de tudo, com funcionalidades que surpreende até aos mais exigentes. É verdade que ainda são necessários conhecimentos em Java Script e MDX para a implementação de dashboards mais específicos, entretanto aplicações simples, mas e poderosas, podem ser criadas em minutos, sem escrever uma linha de código. O caminho é este.

E que venha o Pentaho 8.0!

Links Úteis

E para onde foram os fóruns, wikis e comunidades? Abaixo separamos alguns links importantes, que o deixarão com mais segurança: 

# Dicas
1 Ctools
2 CCC Playground - Documentação dos gráficos Ctools
3 Alguns dashboards de demonstração
4 Pentaho Community website
5 Grupo de usuários Brasil
6 Forum mundial da comunidade
7 Blog Pedro Alves
8 Desenvolvimento, treinamento e consultoria especializada em Pentaho

Referências

Cinco dicas poderosas para configurar o seu Web Analytics

Existem algumas dicas que você pode seguir para ajustar de forma precisa o seu Analytics para maximizar o valor desta ferramenta

As ferramentas de Analytics permitem coletar estatísticas de websites para responder questões fundamentais sobre a sua audiência e os seus interesses. Por exemplo, quem está visitando seu site? De onde eles vieram? O que eles estão fazendo no seu site?

Estas são informações bastante importantes, mas como você configura e utiliza estes dados?

Graças a experiência adquirida ao trabalhar com clientes de diversas indústrias, sabemos que ferramentas de Web Analytics são bastante eficientes para nos ajudar a responder estas questões. Existem algumas dicas que você pode seguir para ajustar de forma precisa o seu Analytics para maximizar (e muito) o valor desta ferramenta.

1. Mantenha seu Analytics limpo

Diversas áreas da sua performance digital podem ficar escondidas em um Analytics bagunçado, então vale a pena mantê-lo limpo. Sempre mantenha pelo menos uma visão limpa de todos os dados do seu website na sua conta do Analytics. Isso significa não ter filtros – só os dados como são coletados originalmente, com toda sua glória inalterada.

Porquê? Por que uma das características dos sistemas de Analytics é o de que, se você fizer uma mudança na visualização de seus dados, toda a mudança será aplicável apenas a partir daquele ponto, o que pode acabar causando perda de dados relevantes, caso você não seja cuidadoso.

2. Trackear e Taggear suas Fontes

As ferramentas de website Analytics automaticamente identificam os tipos diferentes de tráfego e suas fontes, mas o seu funcionamento perfeito depende da informação que a ferramenta consegue buscar das URLs que as pessoas estão utilizando para visualizar o seu site.

Então, munir as URLs do Analytics com mais informação, significa que você conseguirá ter um melhor e mais eficiente tracking. O próprio Google fornece uma ferramenta fácil de construção de URLs que faz com que adicionar informações às URLs seja um processo bem simples. Isto é feito através parâmetros UTM, que incluem informações sobre fontes de tráfego, tipos de campanha, nomes de campanha, etc... É importante ter certeza que a sua agência digital está utilizando URLs bem taggeadas. Mesmo quando utilizar links encurtados (bit.ly, por exemplo) as URLs originais devem incluir estes parâmetros UTM.

3. Definindo os Domínios e Subdomínios

Se o seu site tem múltiplos subdomínios, ativar a opção de mostrar o Domínio Completo na sua conta do Analytics fará a sua vida bem mais simples. O Google Analytics não faz isto de forma padrão, ele trata páginas com o mesmo nome em diferentes subdomínios como a mesma página.

Isto é bastante importante porque ele significaria que duas páginas, “exemplo.com/pagina1” e “subdomínio.com/pagina1” seriam exibidos como “/pagina1”no seu Analytics, dificultando sua análise. Você pode de resolver este ponto de maneira fácil, seguindo este passo-a-passo aqui. 

4. Mantenha tudo junto em um só lugar

Para conseguir os melhores resultados e análises com a informação que você tem sobre o seu site, você vai precisar combinar os dados do Google Analytics com outras fontes. O Google Analytics pode ser integrado facilmente com o Adwords e com o Google Search Console. Ao fazer essa integração, você consegue informações muito mais ricas sobre suas campanhas, atividades de search e performance de search pago.

Você talvez tenha que coordenar as agências com as quais você trabalha para implementar isto pela primeira vez, mas vale dizer que esta é uma atividade que só precisa ser realizada uma vez, e que vai te munir com dados valiosos sobre todas as suas atividades futuras. Você também pode ativar reports demográficos e por interesse no seu Analytics para conseguir mais informações sobre seus visitantes, e sobre quem eles são.

5. Use atalhos espertos

Nunca aconselharíamos cortar partes do trabalho em nenhuma atividade, mas existem alguns atalhos que você pode utilizar em Web Analytics. Uma vez que você identificou quais são os dados mais interessantes para você, é possível criar dashboards e atalhos que te levam diretamente para estes dados, fazendo com que a sua naegação seja mais fácil e rápida.

Dashboards são bons para representações visuais de dados (O Google Analytics tem um dashboard inicial com estatísticas chave do site que podem ser customizadas) mas se você faz download regulares de alguns dados, então recomendamos criar estes atalhos . Você terá que adicionar atalhos ao longo do tempo, mas é uma forma bastante prática de manter as coisas organizadas desde o início.

Estas dicas são algumas das coisas mais simples que encontramos, mas que farão toda a diferença ao utilizar o seu Analytics. Mas existem uma série de outras configurações que podem ser implementadas, melhorando e facilitando a sua vida com o Analytics de sua escolha. Como a maioria dos nossos clientes trabalha com o Google Analytics, focamos nossas recomendações nesta ferramenta, mas elas são facilmente aplicadas à outras ferramentas que você possa utilizar.

*Carol Lara é CSO da Mavens of London na América Latina

fonte

Digital Analytics: desmistificando o fabuloso mundo das métricas digitais

Web Analytics, Digital Marketing Analytics, Online Analytics, Business Intelligence, Big Data, Google Analytics… São tantos nomes e misturebas desenfreadas que é difícil entender de fato o que faz, ou não, parte do universo das métricas digitais.

Pra tirar essa bagunça da frente e ajudar a simplificar o conceito, principalmente mostrar que vai muito além de ferramentas, adaptei esse artigo no qual compartilho os seguintes assuntos com você:

  1. Digital Analytics em 140 caracteres
  2. Digital Analytics é o mesmo que usar o Google Analytics?
  3. Digital Analytics é o mesmo que Web Analytics?
  4. E Business Intelligence / BI, é Digital Analytics?
  5. Posso chamar só de Analytics?
  6. Direto ao ponto: o que é Digital Analytics?
  7. Aplicações de Digital Analytics
  8. Bônus: como começar
  9. Referências

1. Digital Analytics em 140 caracteres

"Utilização de dados para a otimização recorrente da experiência online dos seus usuários."

Experiência online pode ser vender, utilizar um app, postar em uma rede social, clicar em um anúncio etc.

Usuário pode ser um cliente, um funcionário, um parceiro etc.

De fato, Digital Analytics não é nem de perto um bicho de sete cabeças.

2. Então é o mesmo que usar o Google Analytics?

Não. Usar o Google Analytics para a tomada de decisão de melhorias no seu site faz parte do escopo de Digital Analytics, mas é apenas uma das possíveis aplicações desse universo todo potentoso.

  • Analytics Maturity Model publicado na Twinkle Magazine

Explicando visualmente:

Este é um modelo criado por um profissional de renome no mercado, o Stéphane Hamel, que foi diretor em uma das consultorias mais prestigiadas do segmento, a Cardinal Path.

O Online Analytics Maturity Model mostra pra gente que Digital (ou Online) Analytics vai muito além de ferramentas (tools) e tecnologia. Contempla também do gerenciamento de times a processos e metodologias. Logo o Google Analytics é "só" um aspecto de uma dessas pontas desse gráfico.

Só esse tema merece um belo post no futuro, mas acho que deu para ter uma noção né?

3. É o mesmo que Web Analytics?

Web Analytics & Digital Analytics são sinônimos, porém o último a gente pode dizer que é a versão melhorada do primeiro, que ficou muito datado.

O termo "Web" é muito ligado à WWW (World Wide Web) e consequentemente ao browser, porém hoje a gente respira mobilidade e internet das coisas (IoT), então nada mais justo que ampliar de "Web" para "Digital".

Isso não é algo que tô puxando da cartola não, uma das maiores associações do mercado, a Digital Analytics Association (DAA), mudou do seu antigo nome "Web Analytics Association" (WAA) para o atual em 2012 justamente por esse motivo.

Logo, se você é mais Old School e prefere continuar usando o termo Web Analytics, tem problema não. Provavelmente você já usou mouse de bolinha e monitor CRT no seu passado longínquo e, assim como eu, pode ser um pouco mais apegado ao vocabulário tech-clássico.

4. E Business Intelligence / BI?

Não. E sim.

Confesso que é um pouco revoltante a descarada prostituição e buzzwordificação do termo. Tudo quanto é agência digital do novo século faz, vende e contrata gente de BI: de analista de BI, estagiário de BI, gerente de Business Intelligence, programador BI…

Aí você vai ver na descrição da função, é pra tirar relatório no Google Analytics, analisar desempenho de mídia ou confeccionar lindas e coloridas planilhas de Excel. Melhor falar que a vaga é para Digital Analytics (ou Online Analytics, ou Web Analytics ao melhor estilo mouse com bolinha).

Revoltas à parte, Business Intelligence está para o Sistema Solar assim como Digital Analytics está para o planeta Terra (#AmoAnalytics). Um está incluído no outro, mas o primeiro é monstruosamente maior.

“(…) a set of techniques and tools for the acquisition and transformation of raw data into meaningful and useful information for business analysis purposes”

Este é o "Tweet" na Wikipedia sobre Business Intelligence, e se você tiver alguns minutos de paciência verá que BI é mais amplo, complexo e encorpado que o nosso querido fitness Digital Analytics, mas isso não deixa em nada o último desinteressante, mesmo que a gente não chegue a comentar aqui sobre Ralph Kimball ou William Inmon, as duas maiores referências no tema... então bora continuar com nossa lupa analisando o nosso planeta azul de métricas.

[revolta ON] Só pra não perder o hábito: você usar o Google Analytics pra gerar relatórios de performance do seu site e dizer que faz BI seria como você fazer a arte de um cartão de visitas da empresa do seu tio (sim, você é o sobrinho) e dizer para os amiguinhos que faz planejamento e desenvolvimento estratégico de comunicação e publicidade. [/revolta OFF]

E o Big Data?

Você pode praticar Digital Analytics e Big Data ao mesmo tempo, uma vez que o último se refere a uma quantidade elefântica de dados. Ou seria baleística-azulística?

Transcendendo a biologia da coisa, Big Data, que virou outra buzzword, está ligada da coleta à extração de dados a partir de uma volume realmente monstruoso de dados, com intuito de fazer descobertas (a.k.a. gerar insights). Logo o Big Data é praticável tanto no escopo de Digital Analytics como em Business Intelligence.
Entenda melhor este processo seguindo este link.

5. Posso chamar só de Analytics?

Ô se pode. Deve. É nome short, tá na moda também. Ousaria dizer que "Analytics" é sexy. O que tenho reparado é que ficou chic, cool, descolado, e que cada vez mais ganha novos prefixos.

Veja se você já se deparou com algum desses aí:

  • Digital Marketing Analytics
  • Startup Analytics
  • Online Business Analytics
  • eCommerce Analytics
  • App Analytics

Só de usar, já dá uma embelezada né? #AnalyticsSuaLinda

E o significado é o mesmo pra tudo, porém já está segmentado no seu devido contexto:

"Utilização de dados para a otimização da experiência online dos seus usuários [no App / no Ecommerce / na Startup / etc…]"

6. Afinal de contas, sem enrolação, do que se trata Digital Analytics?

Agora vamos à parte mais teórica do texto, só pra deixá-lo um pouco mais sério:

A gente aprendeu antes que

Digital Analytics tem um bocado de nomes doidos, que você pode escolher na maioria das vezes como chamá-lo, mas por favor não use o termo BI pra se referir a tarefas como gerar relatórios no GA, ou ainda atestar que o CTR escapuliu do CPC que foi enquadrado pelo CPA.

E agora vamos aprender que

De uma forma bem objetiva, Digital Analytics compreende um conjunto de técnicas, processos e metodologias que visam a utilização de dados em ambientes digitais para a otimização recorrente e (melhor) tomada de decisão, percorrendo ao menos 3 áreas ou estágios:

  • Coleta de dados (Data Capture): ferramentas, armazenamento de dados, integridade, implementações técnicas, modelagem etc.
  • Visualização dos dados (Data Reporting): relatórios, painéis de controle (dashboards), monitoramento, alertas etc.
  • Análise dos dados (Data Analysis): geração de insights, criação de planos de ação e otimização, formação de base de conhecimento, aprendizado etc.

Avinash Kaushik

em seu livro Digital Analytics 2.0

"Digital analytics is the analysis of qualitative and quantitative data from your business and the competition to drive a continual improvement of the online experience that your customers and potential customers have which translates to your desired outcomes (both online and offline)"

Em tradução livre e descompromissada, seria algo como "Digital Analytics é a análise de dados quantitativos e qualitativos do seu negócio e dos concorrentes orientada ao melhoramento contínuo da experiência dos seus clientes e potenciais clientes que se traduz no seu retorno desejado (ambos online e offline).

E fechamos esta parte teórica com mais uma definição:

Digital Analytics Association

What is Digital Analytics?
"The science of analysis using data to understand historical patterns with an eye to improving performance and predicting the future. The analysis of digital data refers to information collected in interactive channels (online, mobile, social, etc.). Digital Analytics has become an integral part of core business strategies and maintaining a competitive edge. Digital data started the Big Data meme as it heralded the onslaught of Volume, Variety and Velocity, opening the door to new types of correlative discovery much wider. Digital Analytics is a moving target of innovation and exploration. That’s what makes it fascinating."

Realmente fascinante!

[Modo Preguiça ON] Link para o Google Tradutor

7. Que tal demonstrar algumas aplicações?

  • Exemplo de Dashboard postado por ∆ Studio–JQ ∆ no Dribble

Vamos explorar mais a fundo em outras postagens, porém para ficar fácil ligar o nome à coisa, alguns exemplos de aplicações de Digital Analytics:

  • Desenvolver dashboards (painéis de métricas).
  • Gerar relatórios de desempenho de mídia.
  • Implementar ferramentas de analytics com as melhores práticas de mercado.
  • Planejar e definir os indicadores chave de performance (KPI's) do seu site ou campanha.
  • Integrar diferentes fontes de dados em um Data Warehouse.
  • Utilizar os dados coletados para criar novos planejamentos de comunicação digital.
  • Criar e planejar testes A/B definindo métricas de sucesso.
  • Formar uma base de conhecimento do comportamento de navegação do seu usuário.
  • Desenvolver automações (e-mails, conteúdo personalizado, formulários de lead etc.) com base neste mesmo comportamento de navegação.
  • Criar públicos e segmentos de audiência para Remarketing.
  • E a lista vai longe…

Você deve ter notado vários itens acima são táticas ou ações de Marketing Digital, Inbound Marketing e/ou Growth Hacking. Não tem jeito, todos estão relacionados, ligados nessa [termo duramente censurado] gostosa capicce?

No final, a coisa funciona mais ou menos assim: você pode praticar marketing digital ou inbound sem nem olhar para Digital Analytics (shame on you). Mas na maioria das vezes, a prática de Digital Analytics estará sempre associada a outros temas. Sem dúvida uma bela de uma companhia!

8. **Bônus — Como começar?

Aproveitando toda a nova onda de Inbound & Fórmula de Lançamento, marotamente vou compartilhar 2 bônus com você:\

a. Curso oficial do Google

Se já não está praticando hoje nenhuma das atividades de Digital Analytics, ou se já está, mas quer aprofundar seus conhecimentos, minha recomendação top estrela na testa é sempre a mesma: comece pelo curso oficial do Google, o Digital Analytics Fundamentals .

É free. É top. É online e, pra quem prefere, tem legenda em português. Mas não se acostume com traduções, pois a maior parte do conteúdo de Digital Analytics na web está em inglês.

b. Avaliação de Digital Analytics Maturity

  • Exemplo de Relatório da Ferramenta DigitalAnalyticsMaturity.org

Mais um 0800, mas dessa vez se você não se sente confortável em ler em inglês nem tente.

Essa é uma ferramenta free de auto avaliação do modelo de maturidade de Analytics, citado anteriormente.

Espero humildemente que este artigo tenha contribuído um pouquinho mais na sua jornada pelo nirvana Analítico.

Tem sugestões e referências? Elogios de montão? Críticas vulcânicas? Deixe seu comentário!


"Muito obrigado e até a próxima!
May the Analytics be with you!!!"

9. Referências

Pra desenvolver esse texto usei as referências legalmente surripiadas e devidamente creditadas:

IBGE publica Plano de Dados Abertos

Pesquisas, estatísticas e indicadores serão disponibilizados em formato aberto

Pesquisadores, professores universitários, estudantes, empresários, representantes de Organizações da Sociedade Civil e demais cidadãos serão beneficiados com a publicação de dados abertos pelo Instituto Brasileiro de Geografia e Estatística (IBGE). Todas as pesquisas, estatísticas e indicadores elaborados pelo instituto serão publicados em formato aberto. Divulgado na última semana, o calendário de disponibilização está no Plano de Dados Abertos (PDA) do IBGE para o próximo biênio.

“A missão do IBGE é retratar o Brasil com informações necessárias ao conhecimento de sua realidade e ao exercício da cidadania. Portanto, para o instituto é fundamental dar transparência aos dados que são produzidos”, explica Arnaldo Barreto, diretor substituto de Informática do IBGE. Para ele, a elaboração do PDA pelo órgão é um marco para a implantação de um instrumento de planejamento e coordenação de ações de divulgação de dados.

Dados e metadados do Cadastro Central de Empresas, do Censo Agropecuário, do Censo Demográfico e do Índice Nacional de Preços ao Consumidor Amplo (IPCA) são exemplos de pesquisas e indicadores que já foram disponibilizados em formato aberto pelo IBGE. Encontram-se também divulgados dados abertos da Contagem da População, da Classificação Nacional de Atividades Econômicas, Pesquisa Anual de Serviços e da Pesquisa das Características Étnico-raciais da População.

Segundo Barreto, a publicação de dados abertos para a sociedade é um ganho para a elaboração e desenvolvimento de ações governamentais. “A discussão de políticas públicas entre o cidadão e o governo fica mais madura, pois se baseia em fatos e dados oficiais, construídos com metodologias internacionalmente aceitas e coletadas de maneira transparente”, afirma o diretor substituto.

Dados Abertos

A divulgação do PDA pelo IBGE atende ao estabelecido pelo Decreto nº 8.777, de maio de 2016, que criou a Política de Dados Abertos da Administração Pública Federal (APF). Os dados são abertos quando podem ser tratados e trabalhados por pessoas e máquinas. Qualquer cidadão pode livremente usá-los, reutilizá-los e redistribuí-los, estando sujeito, no máximo, à exigência de creditar a sua autoria.

“De acordo com o decreto, todos os órgãos federais têm de elaborar o seu planejamento e a equipe de Dados Abertos do Ministério do Planejamento está à disposição para auxiliar os órgãos neste trabalho”, afirma Marcelo Pagotti, secretário de Tecnologia da Informação do Ministério do Planejamento, Desenvolvimento e Gestão (MP).

O Portal de Dados Abertos (dados.gov.br) conta atualmente com 1.122 conjuntos de dados em formato aberto.

fonte

Não posso fazer tijolos sem barro

Sherlock Holmes

"Dados! Dados!", gritou impaciente.
"Eu não posso fazer tijolos sem barro."
As Faias Cor de Cobre





E você? Como tomas suas decisões?
Tem o apoio de informações precisas sobre o seu negócio?

conheça nossos serviços





O poder dos Sistemas de Apoio à Decisão (SAD)

Também chamados de Decision Suport System (DSS), os Sistemas de Apoio à Decisão (SAD) se utilizam de uma série de conceitos, técnicas e ferramentas para transformar dados em informações úteis para auxiliar a tomada de decisões. Para a elaboração de um sistema deste tipo, normalmente muitos profissionais são envolvidos, principalmente nas áreas da Tecnologia da Informação e Comunicação (TIC) e de Negócios e, especificamente, nas áreas de Business Intelligence (BI), Business Analytics (BA), Data Mining, Machine Learning, Estatística, Banco de Dados, Infraestrutura de Software, Inteligência Competitiva, Marketing, Engenharia e Gestão do Conhecimento, entre outras. A interação de distintos perfis de profissionais garante, além da performance e segurança, que os pontos importantes para a instituição (Indicadores Chave - KPI) sejam definidos pelas áreas que têm o devido conhecimento, maximizando o sucesso dos projetos.

Cubo Analítico

Com todos os Indicadores Chave (KPI) definidos, todas as regras de negócio documentadas e a origem de todos os dados conhecida, se inicia o desenvolvimento do SAD. A primeira etapa consiste em ler os dados de todas as fontes definidas no projeto, integrando-os em um grande armazém de dados, o Data Warehouse (DW).

A partir daí vem a grande sacada do Business Intelligence: são criados os Cubos Analíticos, também chamados de Cubos Multidimensionais, um para cada fato a ser analisado e sem limite de quantidade de Dimensões.

Um único cubo deve ser capaz de oferecer, com muita agilidade, todas as informações que um gestor necessita sobre o fato que o cubo analisa. #Todas.

O exemplo ao lado é uma representação gráfica (gif) de um cubo de Movimentações Financeiras composto por 3 dimensões:

  • Tipo de Movimentação Financeira (o que);
  • Data (quando) e
  • Localidade (onde)

Cada uma das dimensões pode ser utilizada para filtrar os dados e selecionar apenas o período desejado. A porção em vermelho corresponde a seleção feita e no último quadro do gif percebemos o quadrado que indica a intersecção de todos os filtros, ou seja, a resposta desejada.

Filtros aplicados: Tipo de movimentação = Vendas, Data = Ano de 2017, Localidade = Estado de São Paulo.

Painéis Interativos

Agora que o cubo analítico é capaz de dar todas as respostas necessárias ao gestor, a próxima etapa é criar painéis interativos (dashboards) que permitam ao próprio usuário refinar suas consultas, simplesmente selecionando por exemplo o Ano e o Mês, sempre com a possibilidade de filtrar ainda mais os dados, clicando nos gráficos (de barras, pizza, etc.) e obtendo respostas precisas e praticamente automáticas, pois todas as técnicas e ferramentas utilizadas permitem que estes dados sejam pré-computados e de fácil acesso. Tendências e desvios do padrão nos dados da instituiçao são facilmente encontrados, visualmente, de forma clara e intuitiva, conforme alguns exemplos abaixo:

Caso Toyota

No final dos anos 90, a empresa enfrentou grandes problemas em sua cadeia de operações. O custo de armazenamento de carros se elevou e ela não estava mais conseguindo fornecer o produto a tempo para seus clientes. Utilizava computadores que geravam uma quantidade enorme de dados e relatórios que não eram utilizados estrategicamente porque nem sempre eram exatos e muitas vezes eram fornecidos tarde demais - o que atrasava a tomada de decisões.

Uma nova CEO foi contratada. Ela identificou algumas soluções: primeiro, a necessidade de um Data Warehouse - um repositório central de dados, organizado e de fácil acesso. Segundo, a necessidade de implementação de ferramentas de software para efetuar a manipulação desses dados. O novo sistema implantado infelizmente não funcionou de maneira correta: a entrada de dados históricos incluiam anos de erros humanos que não foram detectados, dados duplicados, inconsistentes e falta de importantes informações. Tudo isso gerou análises e conclusões precipitadas sobre o funcionamento da distribuidora.

Apenas em 1999 a empresa resolveu implantar uma plataforma de Business Intelligence. Em questão de dias o sistema apresentou bons resultados. Por exemplo, descobriram que a empresa era cobrada duas vezes por um envio especial por trem (um erro de US$ 800.000). Entre 2001 e 2005, o volume de carros negociados aumentou em 40%, o tempo de trânsito foi reduzido em 5%. Esses e vários outros  benefícios ajudaram a Toyota a alcançar as maiores margens de lucro no mercado automotivo desde 2003, e estão aumentando consistentemente a cada ano desde então. Além disso, um estudo realizado pela IDC Inc. em 2011, indicou que a instituição alcançou, naquele ano, um retorno de pelo menos 506% sobre o investimento em BI. Fonte

Pirâmede da Inteligencia

Esse é apenas um dos inúmeros casos que ilustram a eficiência dessas soluções capazes de integrar e interpretar Dados, transformando-os, de alguma forma, em Informação relevante ao seu negócio, possibilitando, com a devida análise, a criação de Conhecimento. Através da utilização e da gestão deste conhecimento nasce a Inteligência.

Conclusão

Mais de 15 anos passaram desde que a Toyota adotou o BI. Atualmente, gera-se mais de 2.5 quintilhões de bytes de dados diariamente no mundo, sendo que 90% dos existentes hoje foram criados nos últimos 2 anos. A tendência é que esse número cresça de uma forma cada vez mais rápida. 

Uma Solução de Apoio à Decisão não precisa custar milhões de dólares nem exigir a venda casada de equipamentos, treinamentos, consultorias e serviços. Pelo contrário, com software livre e com o respaldo de uma consultoria especializada pode-se atingir resultados excelentes e sustentáveis utilizando o equipamento já existente, com qualquer sistema operacional do mercado, podendo ser acessado desde celulares e computadores até mesmo em grandes painéis televisores. Isto tudo com toda a segurança e liberdade de quem tem todo o código fonte em seu poder.

E você, o que vai fazer com os seus dados?

O que é uma Solução de Apoio à Decisão?

Solução de Apoio à Decisão (SAD) também conhecido Business Intelligence ou Business Analytics, é a especialidade da e-Setorial: transformar dados em informações úteis para auxiliar a tomada de decisões. A partir da integração de dados oriundos de diversas fontes, é possível organizá-los, categorizá-los e filtrá-los em uma única plataforma. Oferecemos ferramentas visuais intuitivas que permitem a análise e compartilhamento das informações com sua equipe, assegurando a confiabilidade da escolha do gestor. 

(modelos de dashboards oferecidos pela e-Setorial)

Confira o Workflow das nossas Soluções de Apoio à Decisão.

 

Não entendeu muito bem? A gente exemplifica. O seguinte caso aconteceu com uma distribuidora de carros da Toyota: 

No final dos anos 90, a empresa enfrentou grandes problemas em sua cadeia de operações. O custo de armazenamento de carros se elevou e ela não estava mais conseguindo fornecer o produto a tempo para seus clientes. Utilizava computadores que geravam uma quantidade enorme de dados e relatórios que não eram utilizados estratégicamente porque nem sempre eram exatos e muitas vezes eram fornecidos tarde demais - o que atrasava a tomada de decisões.

Uma nova CEO foi contratada. Ela identificou algumas soluções: primeiro, a necessidade de um Data Warehouse - um repositório central de dados, organizado e de fácil acesso. Segundo, a necessidade de implementação de ferramentas de software para efetuar a manipulação desses dados. O novo sistema implantado infelizmente não funcionou de maneira correta: a entrada de dados históricos incluiam anos de erros humanos que foram desapercebidos, dados duplicados, inconsistentes e falta de importantes informações. Tudo isso gerou análises e conclusões precipitadas sobre o funcionamento da distribuidora.

Apenas em 1999 a empresa resolveu implantar uma plataforma de Business Intelligence. Em questão de dias o sistema apresentou bons resultados. Por exemplo, descobriram que a empresa era cobrada duas vezes por um envio especial por trem (um erro de US$ 800.000). Entre 2001 e 2005, o volume de carros negociados aumentou em 40%, o tempo de trânsito foi reduzido em 5%. Esses e vários outros  benefícios ajudaram a Toyota a alcançar as maiores margens de lucro no mercado automotivo desde 2003, e estão aumentando consistentemente a cada ano desde então. Além disso, um estudo realizado pela IDC Inc. em 2011, indicou que a instituição alcançou, naquele ano, um retorno de pelo menos 506% sobre o investimento em BI.

dado-informacao-conhecimento-inteligencia

Esse é apenas um dos inúmeros casos que ilustram a eficiência dessas soluções capazes de integrar e interpretar dados, transformando-os, de alguma forma, em Informação relevante ao seu negócio, possibilitando, com a devida análise, a criação de Conhecimento. Através da utilização e da gestão deste conhecimento nasce a Inteligência. 

Mais de 15 anos passaram desde que a Toyota adotou o BI. Atualmente, geramos mais de 2.5 quintilhões de bytes de dados diariamente, sendo que 90% dos existentes hoje foram criados nos últimos 2 anos. A tendência é que esse número cresça de uma forma cada vez mais rápida. 

E você, o que vai fazer com os seus dados? 

Pentaho Day 2015: Um evento dedicado à troca de ideias sobre desenvolvimento Open Source e Pentaho. 

 

A Comunidade Pentaho, qual a e-Setorial está inserida, vem se reunindo desde 2008 para trocar experiências, com o intuíto de fortalecer o grupo. Afinal, precisamos realizar um trabalho excelente para que sejamos reconhecidos como fortes e capazes de realizar grandes feitos com desenvolvimento Open Source. E nada como uma boa troca de ideias e conhecimentos para a obtenção de insights.

No último final de semana, nos dias 15 e 16 de maio, estivemos em Curitiba (PR) para participar do Pentaho Day 2015. Profissionais da área da tecnologia vieram de diversas áreas do Brasil e do mundo. Em média 500 participantes fizeram o maior Pentaho Day da história do evento. 

A organização foi algo que chamou atenção logo de início: desde os e-mails com lembretes antes do evento, o credenciamento divido por ordem alfabética, a divisão das atrações por iniciante/avançado, a estrutura dos auditórios e salas de aula da Universidade Positivo.

Leonardo Matt (Assespro-Paraná), Lincoln Paulo Martins Moreira (Sucesu-Pr), Marcio Junior Vieira (Ambiente Livre Tecnologia), Christian Capelini (Universidade Positivo) e Pedro Alves (Pentaho) abriram o evento com uma breve introdução antes de iniciarem as atrações efetivamente. Nomes como Caio Moreno, Marcio Junior Vieira e Marcello Pontes foram responsáveis pela transmissão de conteúdos para os participantes, através de paletras, mini-cursos e apresentações de cases.

Palestrantes_Pentahoday_2015

(palestrantes Pentaho Day 2015)

Temas específicos foram abordados: Pentaho Data Integration, Modelagem de Dados, CGG & Pentaho Reports, Dashboards Ctools, plug-ins, Amazon Redshift, entre outros. Também foram pincelados o funcionamento de tecnologias complementares.

Além disso por diversos momentos o networking foi facilitado, tanto durante os coffees e quanto durante o jantar de confraternização ao final do primeiro dia de evento.

(coffee break)

(jantar pós primeiro dia de evento) 

E pelo visto, não fomos os únicos animados.

A união do grupo é visível. Temos um objetivo em comum: antes de concorrentes, somos responsáveis pelo fortalecimento Comunidade Pentaho e Open Source. Encontros como esse são muito importantes, mais do que apenas transmissão de conhecimento: o networking e a troca de ideias podem ser a porta de entrada para grandes inovações, tanto para empresas quanto para a sociedade.

(foto oficial do evento/fonte: facebook Pentaho Brasil)

Seis mitos e equívocos a respeito do BI - Business Intelligence

É preciso rever atitudes frente à análise de dados e abandonar alguns conceitos ultrapassados

Quantas das nossas crenças são tão profundas que nunca pensaríamos em questioná-las? Na realidade, mais do que julgamos. Os seres humanos não são tão racionais como pensamos, e, de fato, não há tempo para pesquisar cada alegação que fazemos.

Temos o hábito de repetir o que os outros dizem e aceitar o que dizem como verdade. Algumas dessas premissas são verdadeiras, mas é claro que, em alguns casos, podemos estar sendo levados a acreditar em uma mentira.

Por exemplo, é um equívoco comum que a Grande Muralha da China é a única estrutura feita pelo homem visível do espaço; é possível também observar, a partir do espaço, as cidades e alguns edifícios claramente definidos. Da mesma forma, os Vikings são vulgarmente representados como tendo capacetes com chifres; no entanto, este detalhe da indumentária deste povo foi criado pelo compositor Wagner, na sua ópera The Ring Cycle.

Estes equívocos, infelizmente, não estão restritos a curiosidades interessantes. Mitos e equívocos podem ser encontrados também no mundo dos negócios, muito embora nos protegermos deles possa sair muito caro.

Diante das rápidas alterações na indústria de Business Intelligence (BI) nos últimos dez anos, muitas vezes tendemos acreditar em mitos no que diz respeito à análise de dados. Meu objetivo tentar desfazer alguns deles, assim como conceitos ultrapassados, de uma vez por todas.

Vejamos seis mitos sobre BI:

1 - Apenas os gestores responsáveis por decisões precisam de BI

Apesar de anos de esforço e de enorme investimento, o BI não chega às mãos de todos os responsáveis por processos de decisão. O uso de BI é muitas vezes limitado a um certo número de gestores com poder de decisão dentro de uma organização, e este tipo de ferramenta deve ser acessível a todos os tipos de colaboradores, uma vez que o processo de decisão é cada vez mais amplo dentro das organizações e empresas, e ao fato de todas as decisões precisarem de dados.

Curiosamente, este conceito remonta a estruturas hierárquicas antiquadas no século XIX – muito antes da existência do software. Quando implantado pela primeira vez, o BI utilizou estas estruturas, o que significava que o seu objetivo tinha a ver com auditoria e controle, e não com permitir que as pessoas tomassem melhores decisões através da análise.

Hoje em dia, e apesar do BI ter se tornado mais sofisticado, este pensamento ainda está em vigor, muitas vezes, o que significa que a maioria das pessoas não está extraindo benefícios das camadas extra de dados a que têm acesso.

2 - Uma boa ferramenta BI gera bons relatórios

Quase todos os projetos de BI começam com o objetivo louvável de desenvolver relatórios de gestão. Muitas vezes, relatórios financeiros. E, quase sempre,  é indicado ao departamento de TI o que a ferramenta de BI deve fazer. No entanto, o problema é que a informação que se obtém é estática e “fala” pouco ao usuário.

Isto significa que é quase impossível “interrogar” os dados e, no entanto, a capacidade de análise devia ser a característica chave de um bom sistema de BI. Os usuários  precisam ser capazes de interagir, questionar os dados e construir sistemas de BI que possam ajudar a explorar causas profundas, inter-relações, tendências e mudanças nos dados.

3 - O BI In-Memory resolve o problema da adoção

No mundo moderno, qualquer coisa que demore mais do que uma busca no Google para gerar uma resposta corre o risco de ser abandonada por seus usuários. No entanto, há mais na adoção do que a velocidade em si. Mesmo que sejam rápidos, os sistemas de BI podem tornar-se rígidos devido à falta de um poderoso back-end e ao tempo gasto pelos usuários na produção de relatórios ou visualizações. Resultado? O usuário pode deixar de querer usar os sistemas…

Para criar uma cultura de analítica, o software deve ser rápido, simples de usar e flexível o suficiente para permanecer relevante para o usuário.

4 - Não ter em casa as habilidades analíticas necessárias

Por que pagar analistas e cientistas de dados para interpretar informações? Os seres humanos têm capacidades analíticas naturais, incluindo o reconhecimento de padrões (distinguindo entre aglomerados e pontos individuais), detecção de alterações (notando algo diferente em uma sala) e categorização (detecção de relevância).

Em vez disso, as empresas precisam de um software que democratize a análise de dados para todos e use as habilidades analíticas inatas que todos temos. As organizações precisam democratizar a análise de dados e colocá-la diretamente nas mãos dos seus colaboradores para gerar melhores resultados.

5 - Precisamos de mais recursos visuais para ajudar as pessoas a “obterem” dados

É verdade que cerca de 60% do nosso processamento neural é dedicado a coisas que vemos e, portanto, as visualizações de dados são muito importantes. No entanto, uma imagem por si só não é suficiente. Algumas ferramentas têm visualizações bonitas, mas não permitem a navegação nos dados e, obviamente, esse fato é uma maldição, dadas as capacidades dos gadgets dos dias de hoje, usados por colaboradores/usuários que procuram cada vez mais informações na Internet, através de diversas aplicações.

É fundamental que os usuários possam interagir com as visualizações, para que possam compreender o seu significado e fazer novas descobertas. Olhar para um relatório limitado estática ou interativamente coloca um fim a este processo.

6 - Melhor acesso aos dados significa melhores decisões

Ter toda a informação do mundo não ajudou os banqueiros a evitar a crise financeira de 2009. O fato de os dados estarem lá não significa que eles estejam sendo usados de maneira correta.

A melhoria na capacidade de tomada de decisões requer prática e competência. Estas aptidões nascem do desenvolvimento de competências que ajudam os usuários a protegerem-se de situações inesperadas e de uma maior frequência de determinadas tarefas.

Malcolm Gladwell escreveu que levamos 10 mil horas para que possamos ser especialistas em qualquer atividade. Assim, também os usuários que trabalham com qualquer sistema de BI precisam continuar a praticar a análise de dados. Essa prática vai ajudá-los a tomar decisões mais inteligentes e a descobrir conceitos mais úteis.

Em 2016, as empresas procuram oportunidades de crescimento e é fundamental que não estejam restringidas pelo peso da crença em mitos. Elas precisam rever as suas atitudes frente à análise de dados e tomar medidas para se moverem na direção certa. Em última análise, tomar essas medidas pode melhorar as operações de negócios – que é o objetivo de qualquer empresa. E nesse fato tenho a certeza que podemos sempre acreditar.

fonte

Serviços

Em busca da informação gerencial estratégica, reunimos as técnicas mais modernas de software, processos e pessoas especializadas para conceber soluções completas de acordo com a sua necessidade. O objetivo é fazer você concentrar seus esforços naquilo que importa: o seu produto ou serviço!

A e-Setorial disponibiliza uma completa gama de serviços voltados para:

SetorialMetrics

MD

Em breve

SetorialMetrics ajuda você a tomar decisões mais inteligentes com base em seus dados, oferecendo software, análise, desenvolvimento e hospedagem de soluções completas de business intelligence.

Nós proporcionamos os tipos de insights profundos que anteriormente estavam acessíveis apenas por grandes empresas dispostas a investir em cientistas de dados em tempo integral. Com SetorialMetrics, qualquer empresa pode tornar-se verdadeiramente orientada por dados.

Este produto e-Setorial destina-se a instituições de todo o mundo que atuam em Educação, Vendas ou Planos de Saúde e têm a necessidade de tomar melhores decisões com base em seus dados, sem arcar com a responsabilidades de criar e manter o processo e a infra-estrutura altamente especializados.

SetorialMetrics.com

Aguarde!